Difference between revisions of "Widgets"

From uGFX Wiki
Jump to: navigation, search
(Widget Style)
(Custom render interface)
 
(26 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
'''''Note:''' Make sure you read the article about [[Windows|windows]] first!''
 
'''''Note:''' Make sure you read the article about [[Windows|windows]] first!''
  
The widget class is based on the window. In addition to the window functionalities, it implements the following features:
+
The widget class is based on the [[Windows|window class]]. In addition to the window functionalities, it implements the following features:
  
 +
* Widgets have a text
 
* Widgets can always redraw themselves
 
* Widgets can always redraw themselves
 
* Widgets are able to accept user input such as from a touchscreen/toggle/dial/keyboard
 
* Widgets are able to accept user input such as from a touchscreen/toggle/dial/keyboard
 
* Widgets can have their drawing routine overwritten to provide fancier versions of the object. For example, their are predefined drawing routines for round buttons, image buttons, arrow buttons etc. along with the normal button drawing routine.
 
* Widgets can have their drawing routine overwritten to provide fancier versions of the object. For example, their are predefined drawing routines for round buttons, image buttons, arrow buttons etc. along with the normal button drawing routine.
* Widgets support a "style". By changing the style you can affect the colors used to draw the widget similar to the way you can apply color schemes in Windows and Linux.
+
* Widgets support a "style". By changing the style you can affect the colors used to draw the widget similar to the way you can apply color schemes in Windows and Linux. See [[Widgets#Widget_Style|Widget Style]].
A list with descriptions of the common container API can be found [http://ugfx.org/images/resources/doxygen/master/group___widget.html here].
+
 
 +
== API reference ==
 +
The generic widget API reference can be found [http://api.ugfx.org/group___widget.html here].
  
 
== Initialization ==
 
== Initialization ==
If widgets are used, a default font and a default styling have to be selected:
+
If widgets are used, a default font and a default styling have to be set:
 
<syntaxhighlight lang=c>
 
<syntaxhighlight lang=c>
gwinSetDefaultFont(gdispOpenFont("DejaVu Sans 16"));  // Select your font
+
gwinSetDefaultFont(gdispOpenFont("DejaVu Sans 16"));  // Set default font
gwinSetDefaultStyle(&WhiteWidgetStyle, FALSE);        // Select the widget style
+
gwinSetDefaultStyle(&WhiteWidgetStyle, FALSE);        // Set default widget style
 
</syntaxhighlight>
 
</syntaxhighlight>
 +
A widget will always use the current default font/style unless a font/style has been assigned explicitly using <code>gwinSetFont()</code> / <code>gwinSetStyle()</code>.
 +
 +
Note that both fonts and styles can be changed during runtime.
  
 
== Widget creation ==
 
== Widget creation ==
Line 32: Line 38:
  
 
<code>gwinDestroy()</code> can be used to destroy a window that is no longer needed.
 
<code>gwinDestroy()</code> can be used to destroy a window that is no longer needed.
 +
 +
== Focus ==
 +
Widgets become focusable when a keyboard is used (either a physical one through the [[GINPUT]] module or a virtual on-screen one using the [[Keyboard|keyboard widget]]. A widget in focus will receive the keyboard events. Focus can be changed by either directly clicking on the widget (eg. by using the touchscreen or a mouse) or by using the <code>TAB</code> key on the keyboard. Note that for code-size and performance reasons it's currently only possible to loop forward.
 +
 +
Most widgets come with default keyboard handlers. For example, the [[PushButton]] widget can be clicked by using the <code>SPACE</code> or <code>RETURN</code> key, [[List|lists]] can be scrolled using the arrow keys and so on.
  
 
== Widget Style ==
 
== Widget Style ==
 
The GWIN module provides a simple implementation of widget styles. The widget style allows to change the look of a widget.
 
The GWIN module provides a simple implementation of widget styles. The widget style allows to change the look of a widget.
Currently the the widget style is just a struct of different colors. However, for the future it would be possible to add additional parameters to the widget style.
+
Currently the widget style is just a struct of different colors. However, for the future it would be possible to add additional parameters to the widget style.
 
The widget style contains the same set of colors multiple times but for different states of the widget.
 
The widget style contains the same set of colors multiple times but for different states of the widget.
  
Line 43: Line 54:
 
<syntaxhighlight lang=c>
 
<syntaxhighlight lang=c>
 
WidgetStyle {
 
WidgetStyle {
Background color
+
Widget background color
 
Focus highlight border color
 
Focus highlight border color
  
// Enabled
+
// Colors for when the widget is enabled
 
{
 
{
 
Text Color
 
Text Color
Line 54: Line 65:
 
}
 
}
  
// Disabled
+
// Colors for when the widget is disabled
 
{
 
{
 
Text Color
 
Text Color
Line 62: Line 73:
 
}
 
}
  
// Pressed
+
// Colors for when the widget is pressed
 
{
 
{
 
Text Color
 
Text Color
Line 78: Line 89:
 
  */
 
  */
 
typedef struct GColorSet {
 
typedef struct GColorSet {
color_t text; /**< The text color */
+
    color_t     text;         /* The text color */
color_t edge; /**< The edge color */
+
    color_t     edge;         /* The edge color */
color_t fill; /**< The fill color */
+
    color_t     fill;         /* The fill color */
color_t progress; /**< The color of progress bars */
+
    color_t     progress;     /* The color of progress bars */
 
} GColorSet;
 
} GColorSet;
  
Line 91: Line 102:
 
  */
 
  */
 
typedef struct GWidgetStyle {
 
typedef struct GWidgetStyle {
color_t background; /**< The window background color */
+
    color_t     background;   /* The window background color */
color_t focus; /**< The color when a widget is focused */
+
    color_t     focus;       /* The color when a widget is focused */
GColorSet enabled; /**< The colors when enabled */
+
    GColorSet   enabled;     /* The colors when enabled */
GColorSet disabled; /**< The colors when disabled */
+
    GColorSet   disabled;     /* The colors when disabled */
GColorSet pressed; /**< The colors when pressed */
+
    GColorSet   pressed;     /* The colors when pressed */
 
} GWidgetStyle;
 
} GWidgetStyle;
 
</syntaxhighlight>
 
</syntaxhighlight>
Line 110: Line 121:
 
HTML2COLOR(0x404040), // edge
 
HTML2COLOR(0x404040), // edge
 
HTML2COLOR(0xE0E0E0), // fill
 
HTML2COLOR(0xE0E0E0), // fill
HTML2COLOR(0xE0E0E0) // progress - inactive area
+
HTML2COLOR(0x00E000) // progress - active area
 
},
 
},
  
Line 138: Line 149:
 
* WhiteWidgetStyle
 
* WhiteWidgetStyle
 
* BlackWidgetStyle
 
* BlackWidgetStyle
 +
 +
== Text ==
 +
The text of a widget can be accessed through <code>gwinSetText()</code> and <code>gwinGetText()</code>. Additionally, <code>gwinPrintg()</code> is available which is a wrapper around <code>printg()</code> that allows setting the text of a widget using the common well known <code>printf()</code> syntax.
  
 
== Custom render interface ==
 
== Custom render interface ==
 
Every widget provides a custom render interface. This simple and easy to use interface allows to overwrite the default rendering of the widget and render each widget as want. This is what you're looking for if you want to improve the look of your GUI. See [[Creating a custom rendering routine]].
 
Every widget provides a custom render interface. This simple and easy to use interface allows to overwrite the default rendering of the widget and render each widget as want. This is what you're looking for if you want to improve the look of your GUI. See [[Creating a custom rendering routine]].
  
== API reference ==
+
== Tag ==
The generic widget API reference can be found [http://api.ugfx.org/master/group___widgets.html here].
+
If <code>GWIN_WIDGET_TAGS</code> is set to <code>TRUE</code> in the [[configuration|configuration file]], an additional parameter is added to the widget object: The widget tag. The widget tag is an <code>uint16_t</code> and it allows the user to give a widget a numeric ID. The tag can be accessed via <code>gwinSetTag()</code> and <code>gwinGetTag()</code>.
 +
Widget tags are useful to identify a widget without knowing its type.
  
 
== Widget implementations ==
 
== Widget implementations ==
Line 154: Line 169:
 
* [[Progressbar]]
 
* [[Progressbar]]
 
* [[ImageBox]]
 
* [[ImageBox]]
 +
* [[List]]
 +
* [[TextEdit]]
 +
* [[Keyboard]]
  
  
  
 
[[Category:GWIN]]
 
[[Category:GWIN]]

Latest revision as of 11:19, 27 July 2016

Note: Make sure you read the article about windows first!

The widget class is based on the window class. In addition to the window functionalities, it implements the following features:

  • Widgets have a text
  • Widgets can always redraw themselves
  • Widgets are able to accept user input such as from a touchscreen/toggle/dial/keyboard
  • Widgets can have their drawing routine overwritten to provide fancier versions of the object. For example, their are predefined drawing routines for round buttons, image buttons, arrow buttons etc. along with the normal button drawing routine.
  • Widgets support a "style". By changing the style you can affect the colors used to draw the widget similar to the way you can apply color schemes in Windows and Linux. See Widget Style.

API reference

The generic widget API reference can be found here.

Initialization

If widgets are used, a default font and a default styling have to be set:

gwinSetDefaultFont(gdispOpenFont("DejaVu Sans 16"));   // Set default font
gwinSetDefaultStyle(&WhiteWidgetStyle, FALSE);         // Set default widget style

A widget will always use the current default font/style unless a font/style has been assigned explicitly using gwinSetFont() / gwinSetStyle().

Note that both fonts and styles can be changed during runtime.

Widget creation

Each widget provides a creation call with is named gwinXxxCreate() where Xxx is the name of the widget. The first parameter is either a pointer to a static widget object or NULL. If NULL, the object will be allocated dynamically from the heap. The second parameter is a pointer to a GWidgetInit struct. This struct contains all the attributes which are needed to create the widget (position, size, font, colors...):

typedef struct GWidgetInit {
    GWindowInit                g;			// The GWIN initializer
    const char*                text;			// The initial text
    CustomWidgetDrawFunction   customDraw;		// A custom draw function - use NULL for the standard
    void*                      customParam;		// A parameter for the custom draw function (default = NULL)
    const GWidgetStyle*        customStyle;		// A custom style to use - use NULL for the default style
} GWidgetInit;

As the widget class is based on the window class, the widget initialization structure contains a window initialization structure. See window creation to learn more about the window initialization structure.
Examples on how to use this struct correctly can be found on each widget documentation page.

gwinDestroy() can be used to destroy a window that is no longer needed.

Focus

Widgets become focusable when a keyboard is used (either a physical one through the GINPUT module or a virtual on-screen one using the keyboard widget. A widget in focus will receive the keyboard events. Focus can be changed by either directly clicking on the widget (eg. by using the touchscreen or a mouse) or by using the TAB key on the keyboard. Note that for code-size and performance reasons it's currently only possible to loop forward.

Most widgets come with default keyboard handlers. For example, the PushButton widget can be clicked by using the SPACE or RETURN key, lists can be scrolled using the arrow keys and so on.

Widget Style

The GWIN module provides a simple implementation of widget styles. The widget style allows to change the look of a widget. Currently the widget style is just a struct of different colors. However, for the future it would be possible to add additional parameters to the widget style. The widget style contains the same set of colors multiple times but for different states of the widget.

Note: If you need more control over how a widget is rendering have a look at Custom Rendering Interface.

The widget style struct looks like this (pseudo-code):

WidgetStyle {
	Widget background color
	Focus highlight border color
 
	// Colors for when the widget is enabled
	{
		Text Color
		Edge Color
		Fill Color
		Progress Color
	}
 
	// Colors for when the widget is disabled
	{
		Text Color
		Edge Color
		Fill Color
		Progress Color
	}
 
	// Colors for when the widget is pressed
	{
		Text Color
		Edge Color
		Fill Color
		Progress Color
	}
}

The real implementation of the widget styles looks like this:

/**
 * @brief	The GColorSet structure
 */
typedef struct GColorSet {
    color_t      text;         /* The text color */
    color_t      edge;         /* The edge color */
    color_t      fill;         /* The fill color */
    color_t      progress;     /* The color of progress bars */
} GColorSet;
 
/**
 * @brief	The GWidgetStyle structure
 * @details	A GWidgetStyle is a set of colors that together form a "style".
 * 		These colors should not be confused with the GWindow foreground
 * 		and background colors which are used for drawing operations.
 */
typedef struct GWidgetStyle {
    color_t      background;   /* The window background color */
    color_t      focus;        /* The color when a widget is focused */
    GColorSet    enabled;      /* The colors when enabled */
    GColorSet    disabled;     /* The colors when disabled */
    GColorSet    pressed;      /* The colors when pressed */
} GWidgetStyle;

Therefore, a widget style can be created like this:

const GWidgetStyle MyCustomStyle = {
	HTML2COLOR(0xFFFFFF),			// window background
	HTML2COLOR(0x2A8FCD),			// focused
 
	// enabled color set
	{
		HTML2COLOR(0x000000),		// text
		HTML2COLOR(0x404040),		// edge
		HTML2COLOR(0xE0E0E0),		// fill
		HTML2COLOR(0x00E000)		// progress - active area
	},
 
	// disabled color set
	{
		HTML2COLOR(0xC0C0C0),		// text
		HTML2COLOR(0x808080),		// edge
		HTML2COLOR(0xE0E0E0),		// fill
		HTML2COLOR(0xC0E0C0)		// progress - active area
	},
 
	// pressed color set
	{
		HTML2COLOR(0x404040),		// text
		HTML2COLOR(0x404040),		// edge
		HTML2COLOR(0x808080),		// fill
		HTML2COLOR(0x00E000)		// progress - active area
	}
};

Applying styles

A widget style can either be applied to an individual widget using gwinSetStyle() or it can be set as the default style for all widgets that did not receive a specific widget style using gwinSetDefaultStyle()

Built-In styles

GWIN comes with the following built-in widget styles:

  • WhiteWidgetStyle
  • BlackWidgetStyle

Text

The text of a widget can be accessed through gwinSetText() and gwinGetText(). Additionally, gwinPrintg() is available which is a wrapper around printg() that allows setting the text of a widget using the common well known printf() syntax.

Custom render interface

Every widget provides a custom render interface. This simple and easy to use interface allows to overwrite the default rendering of the widget and render each widget as want. This is what you're looking for if you want to improve the look of your GUI. See Creating a custom rendering routine.

Tag

If GWIN_WIDGET_TAGS is set to TRUE in the configuration file, an additional parameter is added to the widget object: The widget tag. The widget tag is an uint16_t and it allows the user to give a widget a numeric ID. The tag can be accessed via gwinSetTag() and gwinGetTag(). Widget tags are useful to identify a widget without knowing its type.

Widget implementations

These are the currently implemented widgets: